Please use this identifier to cite or link to this item:
http://elar.khnu.km.ua/jspui/handle/123456789/7874

Можете відсканувати цей QR-код телефоном( програмою "Сканер QR-кодів" ) для збереження.

Title: Аналіз відмінностей регіонального розвитку в Україні за допомогою нечіткої методики кластеризації
Other Titles: Analysis of regional development disparities in Ukraine with fuzzy clustering technique
Authors: Горбатюк, Катерина Володимирівна
Манталюк, Ольга Володимирівна
Проскурович, Оксана Василівна
Вальков, Олександр Броніславович
Gorbatiuk, Kateryna
Mantalyuk, Olha
Proskurovych, Oksana
Valkov, Oleksandr
Keywords: regional development disparities;clustering methods;hierarchical cluster technique;fuzzy clustering technique;fuzzy clusters;fuzzy c-means algorithm
Issue Date: Jan-2019
Citation: Analysis of Regional Development Disparities in Ukraine Using Fuzzy Clustering [Електронний ресурс] / K. Gorbatiuk, O. Mantalyuk, O. Proskurovych, O. Valkov // CEUR Workshop Proceedings. – 2019.– Vol-2422. – P. 194-210. – Режим доступу: http://ceur-ws.org/Vol-2422/paper16.pdf.
Abstract: Disparities in the development of regions in any country affect the entire national economy. Detecting the disparities can help formulate the proper economic policies for each region by taking action against the factors that slow down the economic growth. This study was conducted with the aim of applying clustering methods to analyse regional disparities based on the economic development indicators of the regions of Ukraine. There were considered fuzzy clustering methods, which generalize partition clustering methods by allowing objects to be partially classified into more than one cluster. Fuzzy clustering technique was applied using R packages to the data sets with the statistic indicators concerned to the economic activities in all administrative regions of Ukraine in 2017. Sets of development indicators for different sectors of economic activity, such as industry, agriculture, construction and services, were reviewed and analysed. The study showed that the regional cluster classification results strongly depend on the input development indicators and the clustering technique used for this purpose. Consideration of different partitions into fuzzy clusters opens up new opportunities in developing recommendations on how to differentiate economic policies in order to achieve maximum growth for the regions and the entire country.
URI: http://elar.khnu.km.ua/jspui/handle/123456789/7874
ISSN: 1613-0073
metadata.dc.type: Стаття
Appears in Collections:Кафедра автоматизованих систем і моделювання в економіці

Files in This Item:
File Description SizeFormat 
paper16 (1).pdf851,95 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.